Large molecular fluorescence enhancement by a nanoaperture with plasmonic corrugations
نویسندگان
چکیده
منابع مشابه
Boosting molecular fluorescence with a plasmonic nanolauncher.
Molecular emission enhancement is generally obtained by proper coupling with external resonances. Here we propose the idea of a plasmonic nanolauncher, i.e., a metamaterial-inspired ultranarrow channel at cutoff. Its peculiar operation provides uniform phase and drastic amplitude increase all over the channel, allowing high emission enhancement independent of the position of an individual or gr...
متن کاملPlasmonic enhancement of fluorescence for sensor applications
In this work we report on the so-called plasmonic enhancement effect, whereby the presence of metallic surfaces or particles in the vicinity of a fluorophore can dramatically alter the fluorescence emission and absorption properties of a fluorophore. The effect, which is associated with the surface plasmon resonance of the metallic surface, depends on parameters such as metal type, particle siz...
متن کاملBright off-axis directional emission with plasmonic corrugations.
In this work, a new plasmonic bulls-eye structure is introduced to efficiently harvest the emitted light from diamond nitrogen vacancy (NV) centers. We show that the presence of a simple metal sub-layer underneath of a conventional bulls-eye antenna, separated by a dielectric layer, results in the spontaneous emission enhancement and increment in out-coupled light intensity. High Purcell factor...
متن کاملLarge enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings.
Enhancing nonlinear processes at the nanoscale is a crucial step toward the development of nanophotonics and new spectroscopy techniques. Here we demonstrate a novel plasmonic structure, called plasmonic nanocavity grating, which is shown to dramatically enhance surface nonlinear optical processes. It consists of resonant cavities that are periodically arranged to combine local and grating reso...
متن کاملLarge spontaneous emission enhancement in plasmonic nanocavities
Cavity–emitter coupling can enable a host of potential applications in quantum optics, from low-threshold lasers to brighter single-photon sources for quantum cryptography1. Although some of the first demonstrations of spontaneous emission modification occurred in metallic structures2,3, it was only after the recent demonstration of cavity quantum electrodynamics effects in dielectric optical c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2011
ISSN: 1094-4087
DOI: 10.1364/oe.19.013056